
Core Concept: Computational Thinking 

 

3
www.p12engineering.org

 

Engineering Literacy Dimension: Engineering Practices 
Practice: Quantitative Analysis 
Overview: Computational Thinking is the process of dissecting complex problems in a manner to generate solutions that are expressed as a series of computational 
steps in which a computer can perform (Aho, 2012). Typically, this process is separated into four elements: (1) decomposition (the method of dissecting a problem into 
smaller more manageable tasks), (2) pattern recognition (the method of searching for similarities within problems or solutions), (3) abstraction (the method of synthesizing 
important information and filtering out irrelevant data while generating a solution), and (4) algorithm design (the method of creating a step-by-step solution to be carried 
out by a computer program) (BBC, 2018). Computational Thinking also includes knowledge related to (a) the formation of algorithms (including flowcharting), (b) the 
translation of algorithms using appropriate programming languages, and (c) software design, implementation, and testing. Computational Thinking is important to the 
practice of Quantitative Analysis as engineering professionals systematically analyze and develop algorithms and programs to develop or optimize solutions to design 
problems. Furthermore, computational thinking is necessary to develop efficient and automated physical systems as well as visualizations of design concepts and 
computational scientific models (NRC, 2011). 

Performance Goal for High School Learners 
I can successfully design, develop, implement, and evaluate algorithms/programs that are used to visualize/control physical systems that address an engineering 
problem/task. 

 
 

Basic 
 

Proficient 
 

Advanced 

ALGORITHM 
FORMATION (including 

flowcharting) 

I can interpret a flowchart of a designed 
system and describe how the system 

may work with what algorithms. 

I can develop algorithms in order to 
develop a part of my solution and 

communicate them using flowcharts. 

I can develop and implement a program 
that incorporates a series of algorithms in 

order to optimize my solution in its 
entirely. 

PROGRAMMING 
LANGUAGES 

I can develop basic programs using 
correct syntax and logical organization. 

I can develop programs using more 
advanced programming techniques, such 

as loops, conditional structures, and 
variables. 

I can develop programs using highly 
advanced techniques, such as writing 

external functions and calling them from 
a program. 

SOFTWARE DESIGN, 
IMPLEMENTATION, & 

TESTING 

I can develop a solution to an engineering 
design problem using industry-grade 

software. 

I can develop and implement a solution 
to an engineering design problem using a 

variety of industry-grade software. 

I can evaluate and justify which software 
package, among a variety of industry-
grade software, is optimal for solving a 
specific engineering design problem. 

 


